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Abstract

Given that the risk distribution has a heavy tail, the non-parametric
worst case analysis, i.e the minimum of the sample, is always down-
wards biased. Relying on semi-parametric EVT reduces the bias con-
siderably in the case of very heavy tails. For the less heavy tails this
relationship is reversed. We derive the bias for the non-parametric
heavy tailed order statistics and contrast it with the semi-parametric
EVT approach. Estimates for a large sample of US stock returns indi-
cates that this patterns in the bias are also present in financial data.
With respect to risk management, this induces an overly conservative
capital allocation.
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1 Introduction

Many applications in economics and finance depend implicitly or explicitly
on worst case analysis. Two examples are the Expected Shortfall (ES) mea-
sure in the Basel III market risk proposal and the stress test stipulated by
the European Insurance and Occupational Pensions Authority (EIOPA). An-
other application is the recent global bank stress tests that are based on
exogenously imposed large shocks to economic variables. These subjective
extreme shocks are often derived from the worst cases that have historically
been observed. The maintained assumption in these applications is that a
simple statistic, like a discretely observed data point such as the worst re-
alization in a sample, is an unbiased estimator of the underlying theoretical
quantile. We evaluate the accuracy of worst case analysis under a variety of
realistic distributional assumptions. We ascertain when worst case analysis
is reliable and what the biases are.

In this paper we address the following issues concerning the worst case. First,
we derive the bias of the non-parametric quantile estimator under the extreme
value conditions and compare it to the bias of the semi-parametric quantile
estimator. This is done for the class of heavy tailed distributions for which
the tail of the distribution is asymptotic to a power law x−α.1 We show that
for heavy tailed distributions the method with the smallest bias depends on
the tail parameters of the distribution. To support the theoretical analysis
we employ Monte Carlo simulations with specific heavy tailed distributions.
Subsequently, we use individual stock return data to demonstrate the impli-
cations for practical applications.

The non-parametric quantile estimator is the sample extreme order statis-
tic. We apply Extreme Value Theory (EVT) to determine the distribution of
the largest order statistic as an estimator of the worst case for heavy tailed
distributions. In case of the semi-parametric quantile estimator we follow
Hill’s (1975) approach to estimate the Value-at-Risk (VaR) at 1/n; Goldie
and Smith (1987) provide the asymptotic mean and variance. Via a Poisson
approximation Leadbetter, Lindgren, and Rootzén (1983) derive the asymp-
totic distribution for the lower order statistics, which we utilize as well.

The bias of the semi-parametric and non-parametric quantile estimator is
derived under the assumption that the second order term in the asymptotic
expansion of the tail of the distribution also follows a power law. Many known

1As in the case of the Pareto distribution and where x denote the losses.
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heavy tailed distributions, like the Student-t and Symmetric Stable distri-
butions, satisfy this expansion. Asymptotically the semi-parametric quantile
estimator gives a smaller bias than the non-parametric worst case estimate.
In finite samples for larger α’s (thinner tails) this ranking is reversed.2

Danielsson (2011) gives a comprehensive overview of the different method-
ologies and issues regarding VaR estimation. However, on the specific case
of the worst case analysis, the economic literature to date is rather sparse.
Nevertheless, worst case analysis is gaining in popularity in applications. An
example is the EIOPA (2014) stress test. One of the scenarios in the stress
test requires insurers to evaluate a one-in-hundred year adverse shock coming
from both the EU equity and corporate bond market.

There are a few indirect examples where the maximum of risk measures are
put to use. The Basel committee recently adopted a new framework for the
estimation of risk. In their new approach they moved from VaR as a risk
measure to ES.3 In the revised market risk framework they use a function
of ES to determine the trading book capital requirements. They use the
stressed ES scaled by a ratio of the 12 month ES. The stressed ES is taken as
the maximum ES measured over a longer time series.4 Taking the maximum
over a long time horizon calibrates the measure to past crisis periods instead
of current market conditions.

The academic literature also focuses on maximum risk measures. Instead of
using ES, Ghaoui, Oks, and Oustry (2003) use the maximum VaR over a
random space of probability distributions for robust portfolio optimization.
Zhu and Fukushima (2009) extend their paper by including ES as the basis
of the risk measure. Along this line, Kerkhof, Melenberg, and Schumacher
(2010) use the worst case across classes of models to incorporate model risk
in capital reserve requirements.

To investigate the implications of the bias for the two different estimators
we use the securities database by the Center for Research in Security Price
(CRSP) to do worst case analysis. We estimate the worst case with the two
quantile estimators for a fixed sample size. Subsequently, we compare the two
quantile estimates. We evaluate to what extent the difference between the
estimates changes as the empirical distribution becomes less heavily tailed.

2For any α there is a sample size n(α) such that for n > n(α) the semi-parametric
estimate implies a smaller bias.

3As stated in their consultative report. See BIS (2013).
4This is the maximum over a rolling window.

3



We find that the non-parametric quantile estimate is smaller than the semi-
parametric quantile estimate for the light heavy tailed stocks. This relation-
ship is reversed for the stocks with a heavier tail. This is an indication that
the predicted dynamics in the relative bias of the quantile estimates can also
be found in financial return data.

The analysis starts with introducing the two quantile estimators. We derive
the biases and show the evolution of the relative biases as a function of the
tail parameters. In the subsequent section we explore the extent of the bias
via Monte Carlo simulations and use CRSP securities data to find this effect
in real world data. In the last section we conclude.

2 Quantile estimators

In this section the two different quantile estimators are introduced. Using
EVT the distribution of the largest order statistics, i.e the non-parametric
quantile estimator, is derived. This is followed by the introduction of the
EVT based semi-parametric quantile estimator.

2.1 Empirical distribution

The limit distribution of the normalized maximum in large samples is pro-
vided by the fundamental theorem of EVT. Furthermore, the distribution of
the intermediate order statistics follow from the Poisson approximation of
the limit law of the number of exceedances as in Leadbetter et al. (1983).

2.1.1 Distribution of the maximum

Given an ordered sample from an i.i.d. non-degenerate cdf F the distribution
of the order statistics reads

Fk,n (x) =
k−1∑
r=0

(
n

r

)
(1− F (x))r Fn−r (x) , (1)

where n is the sample size and Fk,n is the cdf of the kth order statistic. For
the cdf of the maximum,

Fn,n (x) = P (max (X1, ..., Xn) < x) =
∏n

i=1
P {Xi ≤ x} = [F (x)]n .

EVT gives the conditions under which there exist sequences bn and an such
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that
lim
n→∞

[F (anx+ bn)]n → G (x) ,

where G (x) is a well defined non-degenerate cdf.5

In addition, EVT provides the functional form of the cdf G (x) that occurs
as the limit cdf (Fisher and Tippett (1928) and Gnedenko (1943)). There
are three possible G (x), depending on the shape of the tail of F (x). In this
paper we focus on the Fréchet distribution. The Fréchet limit distribution
reads,

Fréchet: G (x) =

{
0, x ≤ 0

exp {−x−α} , x > 0
α > 0.

We are interested in the cdf of the maxima, G ((x−bn)/an). The parameter α
is the shape parameter and is referred to as the tail index. The cdf of the
maximum is used to derive the expectation and the median of the maximum.
We utilize these two statistics of centrality to make statements about the
behavior of the quantile estimators.

Let X = max (X1, X2, ..., Xn), where the Xi are Fréchet distributed. Then
the expectation and the median of the maximum for the Fréchet distribution
are,6

Fréchet:

{
E [X] = bn + anΓ

(
1− 1

α

)
Median [X] = bn + an log (2)−1/α

The scaling constants an and bn take different forms for specific paramet-
ric distributions within the domain of attraction of the Fréchet distribution.
Some examples of scaling constants for heavy tailed parametric distributions
are presented in Table 1. The Student-t, Pareto and Symmetric Stable dis-
tribution are used in our Monte Carlo simulations.

2.1.2 Distribution of lower order statistics

The cdf of the intermediate order statistics of an i.i.d. sample are represented
by (1). Finding the expectation of the order statistic by assuming a particular
parametric distribution is not a trivial matter. Leadbetter et al. (1983)7

5One says that F (·) falls in the domain of attraction of G (·).
6The derivations are in Appendix A.1.
7See page 33 Theorem 2.2.2 in Leadbetter et al. (1983).
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Table 1: EVT norming constants for α > 0

Distribution family an bn
Pareto n1/α 0

Stable
[
n 1
π

sin
(
απ
2

)
Γ (α)

]1/α
0

Student-t

[
n

Γ(α+1
2 )

Γ(α2 )
√
απ
α(α−1

2 )
]1/α

0

extend the EVT for the maximum to the lower order statistic by means of the
Poisson property of the lower order statistics. The asymptotic distribution
of the kth largest order statistic follows as

P (Xn−k+1,n≤ x)→ G (x)
k−1∑
s=o

(− log [G (x)])s

s!
,

where Xn−k+1,n is the kth order statistic. Given this Poisson approximation
the cdf for the lower order statistics can be derived.

For a sequence of heavy tailed random variables we have that,

G (x)
k−1∑
s=o

(− log [G (x)])s

s!
≈ e−a

α
nx

−α
k−1∑
s=0

(aαnx
−α)

s

s!
.

For the density we find

g (x) ≈ αaαnx
−α−1e−a

α
nx

−α

[
(aαnx

−α)
k−1

[k − 1]!

]
.

Given the density of Xn−k+1,n, we can determine the expectation

E [Xn−k+1,n] =

∫ ∞
0

xαaαnx
−α−1e−a

α
nx

−α

[
(aαnx

−α)
k−1

[k − 1]!

]
dx.

Applying a change of variable y = aαnx
−α, so that dy = −αaαnx−α−1, and a

switch of limits we arrive at the following asymptotic approximation
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E [Xn−k+1,n] ≈ an
k − 1

∫ ∞
0

y
1
αyk−1e−ydy

=
an

[k − 1]!
Γ

[
k − 1

α

]
.

For the Pareto distribution, i.e. H (−x) = Ax−α, the scaling constant an is

(An)
1
α , where A is the scale parameter. The Pareto distribution coincides

with the first order term of the so called Hall expansion, i.e

P (X ≤ −x) = F(−x) = Ax−α[1 +Bx−β + o(x−β)]. (2)

Many of the heavy tailed distributions satisfy the Hall expansion. These
are therefore approximated by the first order term of the Hall expansion.
This allows us to determine the expectation for a wide range of distributions
within the domain of attraction of the Fréchet distribution.

2.2 Semi-parametric EVT quantiles.

From the first order expansion in (2) one obtains the approximations to the
tail quantiles

P (X ≥ x) = Ax−α →
(

P (X ≥ x)

A

) 1
−α

= xp. (3)

In order to estimate xp in (3) consider a quantile y which is somewhat closer
to the center, but sufficiently deep into the tail area such that(

P (X ≥ y)

A

) 1
−α

≈ y (4)

is still a good approximation. Dividing (3) by (4) gives

x

y
=

(
P (X ≥ x)

P (Y ≥ y)

)1/α

. (5)

Subsequently, replace the ratio of the two probabilities by their empirical
counterparts. Bring y to the other side and replace it by the kth order
statistic. This results in the following quantile estimator

x̂ (j, k) = xn−k+1,n

(
k

j

) 1
α̂k

,
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where k is the number of order statistics beyond the xn−k−1,n threshold in the
tail of the distribution. Here j is the jth order statistic X1 ≤ X2 ≤ ... ≤ Xj ≤
... ≤ Xn such that j/n comes closest to the probability level P (X < −x).

Goldie and Smith (1987) derive of the properties of the Hill estimator the
distribution of the semi-parametric quantile estimator,

√
k

log (k/np)

(
x̂p
xp
− 1

)
∼ N

(
−sign (B)√

2βα
,

1

α2

)
.

Here B and β are the second order scale and shape parameter, respectively,
from expansion (2).

2.3 Comparing the empirical- and semi-parametric quan-
tile estimator

The asymptotic bias of the semi-parametric quantile estimator at 1/n is given
by, (

x̂p
xp
− 1

)
∼ −sign (B)√

2βα

log (k)√
k

. (6)

The asymptotic bias of the non-parametric quantile estimator is,8(
x̃p
xp
− 1

)
∼ Γ

(
1− 1

α

)
− 1. (7)

Notice that for the non-parametric quantile estimator the asymptotic bias
approaches infinity as α approaches 1. However, as α increases the Γ function
decreases rapidly. The absolute value of the bias of the semi-parametric
quantile estimator is relatively small for reasonable values of β and k.9 For
given values of k, β, and α < α∗, the absolute bias of the semi-parametric
estimator is smaller than the non-parametric quantile estimator. When α >
α∗, the relationship is reversed. This indicates that for more heavy tailed
distributions the absolute bias of the semi-parametric estimator is smaller.
This relationship is further depicted in Figure 1. Given various levels of
k, Figure 1 depicts at which combination of α and β the bias of the order
statistics becomes smaller than the semi-parametric approach.

8For the derivation see Appendix A.1.
9In applications with daily financial data, k is often smaller than 1,000. For the Student-

t distribution β = 2, but for the Fréchet distribution β = α. Estimates from financial
return data for α are often between 2 and 5.
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Figure 1: Bias comparison

This Figure depicts the area where the absolute bias of the semi-parametric estimator

becomes larger than the bias of the order statistics (colored region). The biases of the

estimators are at p = 1/n as in (6) and (7). For this figure we fix the first k at 8 and then

proceed by steps of 8 to k = 80. This creates the overlapping colored areas for different

levels of k. To the right of the lines the combination of α and β produces a larger bias for

the semi-parametric approach.

For the parameters of the Symmetric Stable distribution, the bias is always
smaller for the semi-parametric estimator, as β = α and α < 2. In case of the
Student-t distribution we have α ∈ [1,∞). Therefore, we can find α > α∗.
From Figure 1, we observe that for k = 8 and β = 2 that the switching of
the biases occurs around α∗ = 5. For higher values of k, the α∗ increases as
depicted in Figure 1.10

10For the path of log(k)/
√
k see Figure 3 in the Appendix. The maximum of the function

is at k = e2.
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3 The severity of the problem

To study the severity of the problem under a controlled setting, we use Monte
Carlo simulations. We extract samples from parametric distributions that fall
in the domain of attraction of the heavy tailed EVT distributions. To analyse
the economic implication of the bias, we use the CRSP database to compare
the difference between the largest order statistic and the semi-parametric
quantile estimator.

Figure 2: Difference between E [Xn−k,n] and F−1
(
n−k
n

)

This figure shows the difference between the average order statistic of a sample and the

inverse cdf at the appropriate probability level. The sample is drawn from a Student-t (3)

distribution of size n = 10, 000 over R = 10, 000 repetitions. The left graph depicts the

whole support of the empirical distribution. The right graph zooms in on the 20 largest

order statistics.

From Figure 2 we see that the wedge between the quantiles of the heavy
tailed parametric distribution and the average of the simulated order statis-
tics becomes larger as one moves out into the tail. This bias is in part due
to Γ(k − 1/α) in the expectation of the order statistics.

The other source for the discrepancy is the discreteness of the empirical dis-
tribution. The discreteness of the empirical distribution for the larger order
statistics is problematic. At the highest order statistic Fn jumps to 1, while
the tail may approach 1 only asymptotically. Hyndman and Fan (1996) ar-
gue that the ith order statistic falls in the interval between F−1 (i/n) and
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F−1 (i+1/n). They argue in favour of using pi =
(
i− 1

3

)
/
(
n+ 1

3

)
as the prob-

ability to match the ith order statistic. The quantile of a uniform distributed
variable is Beta distributed, i.e. β (i, n− i+ 1). Subsequently, they take the
median of the Beta distribution.11 Therefore, F−1

(
1−

(
i− 1

3

)
/
(
n+ 1

3

))
, as

suggested by Hyndman and Fan (1996), is included as an adjustment for the
comparison in the Monte Carlo study.

3.1 Monte Carlo study

For the Monte Carlo simulation we draw from distributions which fall within
the domain of attraction of the Fréchet distribution. The specific distribu-
tions we use are presented in Table 1.

Table 2 shows that for the heavy tailed distributions the expected maximum
is close to the average of the simulated maxima, except for the Symmetric
Stable distribution with α close to 1. This is in contrast to F−1 (1− 1/n)
which differs considerably from the average of the simulated maxima as re-
flected by the first two columns of Table 2. Heavy tailed distributions are
characterized by having unbounded moments. The large standard deviation
of the simulated maximum exemplifies this fact. For the Symmetric Stable
distribution the results are less accurate as can be seen from the expectation
of the Symmetric Stable distribution. In Table 2 we report the estimates
of the semi-parametric quantile estimator from the Monte Carlo study. The
semi-parametric quantile estimator has a consistently smaller bias than the
non-parametric quantile estimator.12

The same conclusions are drawn from the median as a measure of central-
ity.13 Due to the positive skewness of the Fréchet distribution, the difference
between the empirical median and the quantile function is smaller when com-
pared to the result for the mean. The adjustment suggested by Hyndman
and Fan (1996) brings the quantile function close to the theoretical median
and empirical median of the maximum. This is expected as the median is
transformation invariant.

The tables in the Appendix A.3 report the results for the intermediate order
statistics. Tables 8 to 11 report the results for the semi-parametric quantile

11They use the one-for-one invariant transformation property of the median as an argu-
ment for the median as the centrality measure.

12The threshold level k for the semi-parametric estimator is a free parameter. We use the
KS distance metric and automated Eye-Ball methodology, further clarified in Danielsson,
Ergun, De Haan, and De Vries (2015).

13See Table 7 in the Appendix.
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Table 2: Simulations maxima for heavy tailed distributions

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.0 100.0 122.5 177.2 179.9 125.3 103.1 266.8
3.0 21.5 24.7 29.2 29.1 24.5 21.9 18.5
4.0 10.0 11.1 12.3 12.3 11.0 10.1 5.1
5.0 6.3 6.8 7.3 7.4 6.8 6.4 2.5
6.0 4.6 5.0 5.2 5.2 4.9 4.7 1.3

Student-t
2.0 70.7 86.6 125.3 124.3 96.5 73.6 174.9
3.0 22.2 25.4 30.1 30.0 27.7 23.5 19.1
4.0 13.0 14.5 16.1 16.1 15.4 14.2 6.9
5.0 9.7 10.5 11.5 11.3 11.1 10.8 3.7
6.0 8.0 8.6 9.4 9.1 9.1 9.2 2.4

Stable
1.1 1444.9 2088.9 15179.6 8781.4 2546.4 1635.9 72788.5
1.3 416.8 569.3 1644.2 1632.3 634.3 446.6 17228.8
1.5 158.5 207.7 424.5 404.8 216.7 161.8 1259.6
1.7 68.4 86.7 147.0 148.5 88.1 65.4 400.2
1.9 25.9 32.0 48.1 47.5 31.1 15.1 93.7

This table shows the simulation results for the quantile function, expected maximum
and the average of the empirical maximum. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−1/n and ((n−1)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
maximum for the specified distributions. Here En(X) gives the average of the
empirical maximum obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.

estimators at i/n. Tables 13 to 16 report the results for the respective prob-
ability levels with the adjustment suggested by Hyndman and Fan (1996).
Also for the intermediate order statistics we notice a bias, but the differences
are smaller.

To find the point at which the bias for the empirical worst case estimate
becomes smaller than the bias for the semi-parametric estimate we simulate
from the Student-t distribution with increasing degrees of freedom and a
fixed sample size. In Table 4 in the Appendix, we find that the switching
point is around α = 6 for a sample size of n = 10, 000. This confirms the
theoretical prediction of a shift in the relative size of the bias between the
two quantile estimators. This occurs for different sample sizes at different tail
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index levels, as demonstrated in Tables 5 and 6. The switch of the relative
size of the bias is further explored with financial stock market data in the
next section.

3.2 Bias in financial returns

In this section we investigate the bias for real world data. We use the CRSP
security database to compare the largest order statistic and semi-parametric
quantile estimator. This comparison lacks a benchmark as the true quantile is
unknown for the security data. Therefore, we focus on the difference between
the estimates of the two quantile estimators.

3.2.1 Data

The stock market data is obtained from the Center for Research in Secu-
rity Prices (CRSP). The CRSP database contains individual stock data from
1925-12-31 to 2013-12-31 for NYSE, AMEX, NASDAQ and NYSE Arca.
In the main analysis n = 2, 230 stocks are used. For every stock that is
included in the analysis we require that it is traded on one of the four ex-
changes during the whole measurement period, which is between 01-01-1995
and 01-01-2011.14 The fixed time period is to ensure that the sample size
is large enough for the EVT estimation.15 Furthermore, this ensures that
the empirical probability at the largest order statistic is the same across the
different securities.

3.2.2 Results

For the empirical application the tail exponent α needs to be estimated. To
this end we use the Hill estimator. This estimator depends on a selection
of a high order statistic as the cut-off for inclusion of extreme observations
in the Hill estimator. This nuisance statistic is obtained by the KS distance
metric.16 Given the estimate of the tail index, the quantile can be estimated
semi-parametrically. We compare the difference between the non-parametric
and semi-parametric estimator at the 1/n quantile. The differences are col-
lected in different buckets sorted by α̂. This way we are able to determine a
switching point in the size of the biases between the two estimators.

14In the CRSP database ’exchange code’ -2, -1, 0 indicates that a stock was not traded
on one of the four exchanges and thus no price data is recorded for these days. Stocks
that contain exchange code -2, -1, 0 are not included in the analysis.

15The size of the time series for each individual firm is 4030 days.
16The KS distance metric is further explained in Danielsson et al. (2015).
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Table 3: CRSP data

All α̂ < 2 2 < α̂ < 3 3 < α̂ < 4 4 < α̂ < 5 α̂ > 5
n = 2, 230 n = 13 n = 712 n = 1, 001 n = 442 n = 62

Mean -0.003 0.074 0.010 -0.005 -0.017 -0.026
Median -0.011 0.074 0.005 -0.010 -0.017 -0.026

Ste. dev. 0.031 0.072 0.039 0.022 0.019 0.018
1% quantile -0.059 -0.038 -0.063 -0.051 -0.063 -0.085
99% quantile 0.109 0.194 0.138 0.064 0.045 0.031

Rank sum test 0.070 0.305 0.397 0.162 0.003 0.047
This table reports the difference between the largest order statistic and semi-parametric
quantile estimator for US stocks. These are stocks selected from the CRSP database. The
securities need to be traded on NYSE, AMEX, NASDAQ, and NYSE Arca exchanges over
the period from 01-01-1995 till 01-01-2011. The table reports various statistics on the
distribution of the difference between the two estimators. Here n is the number of different
stocks in the different buckets. To determine the number of order statistics for the Hill
estimator we use the KS distance metric described in Danielsson et al. (2015).

From the theoretical results and the Monte Carlo simulations, in Table 4 of
the Appendix, we see that the relative size of the bias changes as a function of
α̂. Table 3 reveals a similar pattern when taking the difference of the quantile
estimates for the securities in the CRSP database. The switch point is around
α̂ = 3. It is difficult to determine the exact switch point for real data. This
is because β, in the bias of the semi-parametric quantile estimator, is not
estimated. In addition, the Hill estimator is estimated with a bias. This
makes it difficult to determine the switch point. It is encouraging that we
see a monotonic decline in the average difference as α̂ increases. This is
supportive for the result that the bias of the EVT based quantile estimator
overtakes the bias of the non-parametric quantile estimator. The results for
the median convey the same story.

The 1% and 99% quantiles of the buckets show that although the mean and
median showcase a switch between the severity of the bias of the quantile
estimators, this might be statistically insignificant. Therefore, we employ
the Rank-sum test to test for the difference in size of the observations of the
empirical distribution of the EVT quantile estimator and the order statistics.
We find that for the lighter heavy tailed random variables the estimates from
the estimators are significantly different from one another. The empirical
distribution of the semi-parametric quantile estimator tends to have larger
values than the distribution of the non-parametric quantile estimator. For
low values of α̂ the difference is in the expected direction, but insignificant.
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4 Conclusion

In this paper we investigate the bias of two different quantile estimators. We
concentrate on estimating the maximum of a sample from a heavy tailed
distribution. We contrast the order statistics which are the non-parametric
quantile estimators and the semi-parametric quantile estimator derived from
the scaled Pareto distribution. These estimators are often used in financial
applications to calculate the risk of a severe loss. The literature to date on
the estimation of the maximum is sparse, and therefore we concentrate on
the bias of the maximum.

The biases for both estimators are derived as a function of the tail exponent.
This allows us to compare the bias as a function of the heaviness of the
tail for a given sample size. We find that for a relatively heavy tail the semi-
parametric quantile estimator produces a smaller bias, but as the tail becomes
less heavy tailed the largest order statistic is the preferred estimator. We
contrast the extent of the bias via Monte Carlo studies and find the predicted
switch in the relative bias. US equities data is used to further explore the
switching point in the bias. We find that for securities with heavy tails
the non-parametric estimator produces on average a larger quantile estimate
than the semi-parametric quantile estimator. This switches for the securities
with less heavy tails. Although this is not a definite test that this occurs for
real world data, it is a strong indication that the predicted effect occurs.

These findings shed new light on the risk measures for market risk currently
proposed in the Basel committee consultative report and the stress test in
the EIOPA report. They integrate the maximum and the maximum of the
ES in their risk measures. When determining the statistical properties of
these risk measures the bias of the measurement needs to be taken into
account and appropriately dealt with. Furthermore, when doing worst case
analysis and estimating the quantile from an empirical sample the same bias
is introduced. Given the heaviness of the tail, the appropriate estimator
needs to be selected.
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A Appendix

A.1 E(X) and median of the Fréchet distribution

We start with the expectation of the distribution with α > 0.

G′ (x) = g (x) = αaαnx
−α−1e−a

α
nx

−α
,

for an = n
1
α we get

g (x) = αnx−α−1e−nx
−α
.

To find E (X) one integrates over the support

E [X] =

∫ ∞
0

xαnx−α−1e−nx
−α
dx

= αn

∫ ∞
0

xx−α−1e−nx
−α
dx.

By applying a change of variable y = nx−α and thus dy = −αnx−α−1dx

E [X] =

∫ 0

∞
−
(y
n

)− 1
α
e−ydy

= n
1
α

∫ ∞
0

(y
n

)− 1
α
e−ydy.

By the Gamma function Γ (q) =
∫∞

0
tq−1e−tdt we find,

E [X] = n
1
αΓ

(
1− 1

α

)
.

Here E[X] is the expectation you find when one collects the maxima of Pareto
distributed samples of size n and average these.

The derivation of the median of the Fréchet distribution is straight forward.
We set the cdf equal to a half and solve for x,

G (x) = exp

{
−
(
x− bn
an

)−α}
=

1

2

Median [X] = bn + an log (2)−1/α .
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A.2 Figures

Figure 3: f (k) = log(k)/
√
k

This figure depicts the value of the terms in the bias of the semi-parametric estimator

which are dependend on k. The term log (k) /
√
k is plotted for various values of k.
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A.3 Tables

Table 4: Simulations maxima for Student-t distributions with n = 10, 000

True Non-parametric Semi-parametric

α F−1 F−1 adj E(X) En(X) Median(X) Mediann(X) st dev sim
2.000 70.700 86.595 125.331 127.321 96.134 73.119 276.704
3.000 22.204 25.432 30.140 30.064 27.662 23.469 19.299
4.000 13.034 14.450 16.127 16.086 15.488 14.196 6.931
5.000 9.678 10.531 11.521 11.271 11.106 10.813 3.597
6.000 8.025 8.630 9.419 9.115 9.117 9.187 2.445
7.000 7.063 7.535 8.280 7.904 7.985 8.253 1.835
8.000 6.442 6.833 7.600 7.107 7.251 7.648 1.414
9.000 6.010 6.347 7.168 6.576 6.757 7.245 1.241
10.000 5.694 5.993 6.884 6.171 6.395 6.948 1.036
11.000 5.453 5.724 6.694 5.893 6.124 6.718 0.947
12.000 5.263 5.514 6.568 5.661 5.911 6.546 0.854
13.000 5.111 5.344 6.486 5.470 5.740 6.404 0.788
14.000 4.985 5.205 6.435 5.327 5.601 6.301 0.749
15.000 4.880 5.089 6.409 5.193 5.480 6.202 0.701
16.000 4.791 4.991 6.400 5.094 5.384 6.122 0.658
17.000 4.714 4.906 6.405 4.998 5.293 6.053 0.631
18.000 4.648 4.833 6.420 4.917 5.217 6.006 0.605
19.000 4.590 4.769 6.444 4.855 5.153 5.956 0.585
20.000 4.539 4.713 6.475 4.797 5.106 5.897 0.563
21.000 4.493 4.663 6.511 4.738 5.051 5.857 0.548

This table shows the simulation results of the comparison between the quantile function,
expected maximum and average of the empirical maximum. The columns with F−1

and F−1adj are the inverse quantile function at the probability n−1/n and ((n−1)1/3)/(n+1/3),
respectively, of the simulated distribution. The column E(X) gives the analytical expected
maximum for the Student-t distribution. Here En(X) gives the average of the empirical
maximum obtained from the simulations. The columns F−1EV T,KS and F−1EV T,EY E represent
the empirical average of the EVT quantile estimator, where the threshold is determined by
the KS distance metric and automated Eye-Ball method, respectively. St dev sim displays
the standard deviations of the empirical maximum. The sample size of each simulation is
n = 10, 000 and with R = 10, 000 repetitions.
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Table 5: Simulations maxima for Student-t distributions with n = 5, 000

True Non-parametric Semi-parametric

α F−1 F−1 adj E(X) En(X) Median(X) Mediann(X) st dev sim
2.000 49.985 61.227 88.623 87.458 66.949 52.629 184.209
3.000 17.598 20.164 23.922 24.091 22.027 18.738 18.334
4.000 10.915 12.111 13.561 13.404 12.958 11.903 5.790
5.000 8.363 9.111 10.030 9.790 9.683 9.323 3.147
6.000 7.074 7.618 8.391 8.045 8.081 8.010 2.170
7.000 6.311 6.743 7.500 7.054 7.160 7.251 1.641
8.000 5.811 6.175 6.969 6.438 6.581 6.756 1.375
9.000 5.461 5.778 6.637 5.964 6.159 6.413 1.112
10.000 5.202 5.487 6.423 5.667 5.869 6.148 1.005
11.000 5.004 5.264 6.285 5.415 5.639 5.965 0.922
12.000 4.847 5.089 6.199 5.237 5.476 5.800 0.819
13.000 4.721 4.947 6.149 5.069 5.320 5.683 0.768
14.000 4.616 4.831 6.125 4.940 5.202 5.585 0.717
15.000 4.528 4.733 6.119 4.839 5.101 5.495 0.676
16.000 4.454 4.650 6.129 4.753 5.025 5.421 0.657
17.000 4.390 4.579 6.149 4.668 4.945 5.363 0.619
18.000 4.334 4.517 6.178 4.600 4.884 5.304 0.597
19.000 4.285 4.463 6.213 4.539 4.828 5.265 0.580
20.000 4.241 4.415 6.254 4.492 4.781 5.219 0.552
21.000 4.203 4.372 6.299 4.451 4.738 5.182 0.543

This table shows the simulation results of the comparison between the quantile function, ex-
pected maximum and average of the empirical maximum. The columns with F−1 and F−1adj

are the inverse quantile function at the probability n−1/n and (n−11/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected maximum
for the Student-t distribution. Here En(X) gives the average of the empirical maximum
obtained from the simulations. The columns F−1EV T,KS and F−1EV T,EY E represent the em-
pirical average of the EVT quantile estimator, where the threshold is determined by the
KS distance metric and automated Eye-Ball method, respectively. St dev sim displays
the standard deviations of the empirical maximum. The sample size of each simulation is
n = 5, 000 and with R = 10, 000 repetitions.
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Table 6: Simulations maxima for Student-t distributions with n = 2, 000

True Non-parametric Semi-parametric

α F−1 F−1 adj E(X) En(X) Median(X) Mediann(X) st dev sim
2.000 31.599 38.714 56.050 57.136 42.016 33.978 167.008
3.000 12.924 14.820 17.626 17.404 16.018 13.907 10.560
4.000 8.610 9.568 10.785 10.511 10.233 9.384 4.635
5.000 6.869 7.499 8.350 8.103 8.028 7.599 2.898
6.000 5.959 6.434 7.203 6.828 6.879 6.665 1.873
7.000 5.408 5.796 6.580 6.061 6.177 6.103 1.439
8.000 5.041 5.374 6.215 5.582 5.730 5.735 1.188
9.000 4.781 5.076 5.994 5.270 5.435 5.468 1.095
10.000 4.587 4.855 5.861 5.012 5.197 5.264 0.947
11.000 4.437 4.685 5.783 4.825 5.030 5.128 0.856
12.000 4.318 4.550 5.744 4.675 4.888 4.996 0.780
13.000 4.221 4.440 5.730 4.565 4.780 4.905 0.730
14.000 4.140 4.350 5.737 4.451 4.678 4.813 0.706
15.000 4.073 4.273 5.757 4.370 4.603 4.752 0.658
16.000 4.015 4.208 5.787 4.299 4.534 4.699 0.635
17.000 3.965 4.153 5.826 4.231 4.473 4.645 0.606
18.000 3.922 4.104 5.871 4.188 4.429 4.598 0.590
19.000 3.883 4.061 5.921 4.133 4.384 4.564 0.565
20.000 3.850 4.023 5.974 4.099 4.355 4.523 0.553
21.000 3.819 3.989 6.030 4.063 4.315 4.498 0.542

This table shows the simulation results of the comparison between the quantile function, ex-
pected maximum and average of the empirical maximum. The columns with F−1 and F−1adj

are the inverse quantile function at the probability n−1/n and (n−11/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected maximum
for the Student-t distribution. Here En(X) gives the average of the empirical maximum
obtained from the simulations. The columns F−1EV T,KS and F−1EV T,EY E represent the em-
pirical average of the EVT quantile estimator, where the threshold is determined by the
KS distance metric and automated Eye-Ball method, respectively. St dev sim displays
the standard deviations of the empirical maximum. The sample size of each simulation is
n = 2, 000 and with R = 10, 000 repetitions.
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Table 7: Simulations maxima for heavy tailed distributions

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) Median(X) Mediann(X) st dev sim
α Pareto

2.0 100.0 122.5 177.2 179.9 120.1 121.0 266.8
3.0 21.5 24.7 29.2 29.1 24.3 24.4 18.5
4.0 10.0 11.1 12.3 12.3 11.0 11.0 5.1
5.0 6.3 6.8 7.3 7.4 6.8 6.8 2.5
6.0 4.6 5.0 5.2 5.2 4.9 4.9 1.3

Student-t
2.0 70.7 86.6 125.3 124.3 84.9 85.3 174.9
3.0 22.2 25.4 30.1 30.0 25.2 25.1 19.1
4.0 13.0 14.5 16.1 16.1 14.4 14.3 6.9
5.0 9.7 10.5 11.5 11.3 10.6 10.5 3.7
6.0 8.0 8.6 9.4 9.1 8.9 8.5 2.4

Stable
1.1 1444.9 2088.9 15179.6 8781.4 2016.2 1988.4 72788.5
1.3 416.8 569.3 1644.2 1632.3 552.4 552.1 17228.8
1.5 158.5 207.7 424.5 404.8 202.3 202.0 1259.6
1.7 68.4 86.7 147.0 148.5 84.7 85.9 400.2
1.9 25.9 32.0 48.1 47.5 31.2 31.6 93.7

This table shows the simulation results of the comparison between the quantile function,
expected maximum and average of the empirical maximum. The column E(X) gives
the analytical expectation of the maximum for the specified heavy tailed distributions.
The second column, with En(X) gives the average of the empirical maximum obtained
from simulation. The columns Median(X) and Mediann(X) represent the theoretical
and empirical median for the distance metric, respectively. St dev sim displays the
standard deviations of the empirical maximum. The sample size of each simulation is
n = 10, 000 and with R = 10, 000 repetitions.
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Table 8: Simulations Xn−2,n for heavy tailed distributions

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 70.71 77.46 88.62 88.78 81.18 71.73 46.00
3.00 17.10 18.17 19.45 19.43 18.50 17.29 5.86
4.00 8.41 8.80 9.19 9.16 8.89 8.46 2.00
5.00 5.49 5.70 5.88 5.88 5.74 5.52 1.03
6.00 4.14 4.26 4.37 4.36 4.28 4.15 0.62

Student-t
2.00 49.98 54.76 62.67 63.10 64.11 50.98 32.73
3.00 17.60 18.71 20.09 20.00 21.07 18.26 6.15
4.00 10.92 11.44 12.10 11.96 12.47 11.58 2.73
5.00 8.36 8.69 9.22 8.97 9.29 9.06 1.60
6.00 7.07 7.31 7.85 7.49 7.75 7.81 1.17

Stable
1.10 769.53 908.24 1379.96 1384.90 1110.72 801.41 2116.72
1.30 244.59 281.40 379.43 383.74 318.03 250.14 442.85
1.50 99.93 112.83 141.50 140.51 121.12 99.71 117.35
1.70 45.53 50.67 60.54 60.74 52.82 43.82 39.91
1.90 18.06 19.85 22.80 23.00 20.79 12.17 12.40

This table shows the simulation results for the quantile function, expected Xn−2,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−2/n and ((n−2)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 9: Simulations Xn−3,n for heavy tailed distributions

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 57.74 61.24 66.47 66.54 63.81 58.07 24.14
3.00 14.94 15.54 16.21 16.26 15.78 15.05 3.80
4.00 7.60 7.83 8.04 8.04 7.89 7.63 1.31
5.00 5.06 5.19 5.29 5.28 5.22 5.08 0.69
6.00 3.86 3.94 4.00 4.00 3.96 3.88 0.44

Student-t
2.00 40.81 43.28 47.00 47.17 50.83 41.18 17.21
3.00 15.35 15.98 16.74 16.64 18.00 15.77 3.78
4.00 9.83 10.14 10.58 10.42 11.02 10.29 1.79
5.00 7.67 7.87 8.30 8.04 8.36 8.17 1.13
6.00 6.56 6.71 7.19 6.81 7.06 7.10 0.81

Stable
1.10 532.29 592.47 752.71 750.47 728.25 532.91 616.20
1.30 179.09 196.08 233.49 232.93 221.57 179.07 153.61
1.50 76.30 82.52 94.33 93.57 88.55 75.32 46.10
1.70 35.92 38.48 42.74 43.02 40.00 34.74 19.69
1.90 14.67 15.58 16.80 17.05 16.72 10.75 6.54

This table shows the simulation results for the quantile function, expected Xn−3,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−3/n and ((n−3)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 10: Simulations Xn−4,n for heavy tailed distributions

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 50.00 52.22 55.39 55.47 54.05 50.01 16.52
3.00 13.57 13.97 14.41 14.44 14.12 13.64 2.79
4.00 7.07 7.23 7.37 7.37 7.25 7.10 1.01
5.00 4.78 4.87 4.94 4.93 4.88 4.80 0.54
6.00 3.68 3.74 3.78 3.78 3.74 3.69 0.35

Student-t
2.00 35.33 36.91 39.17 39.34 43.23 35.41 11.55
3.00 13.94 14.35 14.88 14.79 16.11 14.21 2.77
4.00 9.13 9.33 9.70 9.52 10.09 9.46 1.37
5.00 7.21 7.35 7.74 7.45 7.76 7.59 0.87
6.00 6.22 6.32 6.80 6.40 6.60 6.63 0.66

Stable
1.10 409.82 443.56 524.61 523.13 551.65 400.54 334.54
1.30 143.57 153.50 173.62 173.35 173.98 141.56 85.08
1.50 63.02 66.77 73.37 73.16 71.61 61.79 29.61
1.70 30.37 31.95 34.36 34.61 33.10 29.47 12.41
1.90 12.68 13.25 13.85 14.12 14.41 9.85 4.30

This table shows the simulation results for the quantile function, expected Xn−4,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−4/n and ((n−4)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 11: Simulations Xn−5,n for heavy tailed distributions

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 44.72 46.29 48.47 48.60 47.65 44.55 12.55
3.00 12.60 12.89 13.21 13.25 12.96 12.64 2.23
4.00 6.69 6.80 6.91 6.91 6.80 6.70 0.83
5.00 4.57 4.64 4.69 4.69 4.63 4.59 0.45
6.00 3.55 3.59 3.62 3.62 3.58 3.56 0.29

Student-t
2.00 31.60 32.71 34.27 34.35 38.18 31.51 8.76
3.00 12.92 13.23 13.64 13.55 14.78 13.11 2.24
4.00 8.61 8.77 9.10 8.90 9.43 8.87 1.13
5.00 6.87 6.97 7.36 7.06 7.33 7.17 0.74
6.00 5.96 6.04 6.51 6.10 6.27 6.29 0.55

Stable
1.10 334.59 356.25 405.38 404.79 449.66 321.68 203.19
1.30 120.95 127.54 140.23 140.44 145.29 118.11 58.84
1.50 54.34 56.89 61.14 61.19 61.04 53.04 21.32
1.70 26.67 27.76 29.30 29.57 28.69 25.96 9.05
1.90 11.33 11.73 12.03 12.33 12.88 9.20 3.19

This table shows the simulation results for the quantile function, expected Xn−5,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−5/n and ((n−5)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 12: Simulations maxima for heavy tailed distributions (Semi-
parametric adjusted)

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.0 100.0 122.5 177.2 179.9 164.0 127.7 266.8
3.0 21.5 24.7 29.2 29.1 29.0 25.2 18.5
4.0 10.0 11.1 12.3 12.3 12.4 11.2 5.1
5.0 6.3 6.8 7.3 7.4 7.5 6.9 2.5
6.0 4.6 5.0 5.2 5.2 5.3 5.0 1.3

Student-t
2.0 70.7 86.6 125.3 124.3 123.9 91.3 174.9
3.0 22.2 25.4 30.1 30.0 32.5 27.2 19.1
4.0 13.0 14.5 16.1 16.1 17.5 16.0 6.9
5.0 9.7 10.5 11.5 11.3 12.4 12.0 3.7
6.0 8.0 8.6 9.4 9.1 10.0 10.1 2.4

Stable
1.1 1444.9 2088.9 15179.6 8781.4 4543.7 2508.2 72788.5
1.3 416.8 569.3 1644.2 1632.3 1008.2 630.2 17228.8
1.5 158.5 207.7 424.5 404.8 315.4 215.3 1259.6
1.7 68.4 86.7 147.0 148.5 122.0 82.7 400.2
1.9 25.9 32.0 48.1 47.5 40.3 17.1 93.7

This table shows the simulation results for the quantile function, expected maximum
and the average of the empirical maximum. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−1/n and ((n−1)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
maximum for the specified distributions. Here En(X) gives the average of the
empirical maximum obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. The probabilities are adjusted with the suggestion by Hyndman and
Fan (1996). St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 13: Simulations Xn−2,n for heavy tailed distributions (Semi-
parametric adjusted)

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 70.71 77.46 88.62 88.78 90.73 78.91 46.00
3.00 17.10 18.17 19.45 19.43 19.90 18.40 5.86
4.00 8.41 8.80 9.19 9.16 9.39 8.87 2.00
5.00 5.49 5.70 5.88 5.88 5.99 5.73 1.03
6.00 4.14 4.26 4.37 4.36 4.44 4.28 0.62

Student-t
2.00 49.98 54.76 62.67 63.10 71.28 56.13 32.73
3.00 17.60 18.71 20.09 20.00 22.63 19.50 6.15
4.00 10.92 11.44 12.10 11.96 13.19 12.22 2.73
5.00 8.36 8.69 9.22 8.97 9.74 9.49 1.60
6.00 7.07 7.31 7.85 7.49 8.09 8.15 1.17

Stable
1.10 769.53 908.24 1379.96 1384.90 1361.18 964.97 2116.72
1.30 244.59 281.40 379.43 383.74 377.59 291.05 442.85
1.50 99.93 112.83 141.50 140.51 140.28 113.18 117.35
1.70 45.53 50.67 60.54 60.74 60.13 48.67 39.91
1.90 18.06 19.85 22.80 23.00 23.02 12.87 12.40

This table shows the simulation results for the quantile function, expected Xn−2,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−2/n and ((n−2)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. The probabilities are adjusted with the suggestion by Hyndman and
Fan (1996). St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 14: Simulations Xn−3,n for heavy tailed distributions (Semi-
parametric adjusted)

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 57.74 61.24 66.47 66.54 68.37 61.74 24.14
3.00 14.94 15.54 16.21 16.26 16.52 15.67 3.80
4.00 7.60 7.83 8.04 8.04 8.16 7.87 1.31
5.00 5.06 5.19 5.29 5.28 5.36 5.21 0.69
6.00 3.86 3.94 4.00 4.00 4.05 3.95 0.44

Student-t
2.00 40.81 43.28 47.00 47.17 54.35 43.81 17.21
3.00 15.35 15.98 16.74 16.64 18.84 16.45 3.78
4.00 9.83 10.14 10.58 10.42 11.42 10.65 1.79
5.00 7.67 7.87 8.30 8.04 8.62 8.42 1.13
6.00 6.56 6.71 7.19 6.81 7.25 7.29 0.81

Stable
1.10 532.29 592.47 752.71 750.47 820.06 599.57 616.20
1.30 179.09 196.08 233.49 232.93 245.45 197.26 153.61
1.50 76.30 82.52 94.33 93.57 96.82 81.70 46.10
1.70 35.92 38.48 42.74 43.02 43.30 37.16 19.69
1.90 14.67 15.58 16.80 17.05 17.79 11.15 6.54

This table shows the simulation results for the quantile function, expected Xn−3,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−3/n and ((n−3)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. The probabilities are adjusted with the suggestion by Hyndman and
Fan (1996). St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 15: Simulations Xn−4,n for heavy tailed distributions (Semi-
parametric adjusted)

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 50.00 52.22 55.39 55.47 56.81 52.32 16.52
3.00 13.57 13.97 14.41 14.44 14.60 14.05 2.79
4.00 7.07 7.23 7.37 7.37 7.44 7.25 1.01
5.00 4.78 4.87 4.94 4.93 4.98 4.88 0.54
6.00 3.68 3.74 3.78 3.78 3.80 3.75 0.35

Student-t
2.00 35.33 36.91 39.17 39.34 45.39 37.06 11.55
3.00 13.94 14.35 14.88 14.79 16.66 14.67 2.77
4.00 9.13 9.33 9.70 9.52 10.36 9.71 1.37
5.00 7.21 7.35 7.74 7.45 7.94 7.76 0.87
6.00 6.22 6.32 6.80 6.40 6.74 6.77 0.66

Stable
1.10 409.82 443.56 524.61 523.13 598.97 436.54 334.54
1.30 143.57 153.50 173.62 173.35 186.97 151.97 85.08
1.50 63.02 66.77 73.37 73.16 76.30 65.60 29.61
1.70 30.37 31.95 34.36 34.61 35.03 30.97 12.41
1.90 12.68 13.25 13.85 14.12 15.06 10.11 4.30

This table shows the simulation results for the quantile function, expected Xn−4,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−4/n and ((n−4)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. The probabilities are adjusted with the suggestion by Hyndman and
Fan (1996). St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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Table 16: Simulations Xn−5,n for heavy tailed distributions (Semi-
parametric adjusted)

True Non-parametric Semi-parametric

F−1 F−1 adj E(X) En(X) F−1EV T,KS F−1EV T,EY E st dev sim

α Pareto
2.00 44.72 46.29 48.47 48.60 49.53 46.17 12.55
3.00 12.60 12.89 13.21 13.25 13.31 12.94 2.23
4.00 6.69 6.80 6.91 6.91 6.94 6.82 0.83
5.00 4.57 4.64 4.69 4.69 4.71 4.65 0.45
6.00 3.55 3.59 3.62 3.62 3.63 3.60 0.29

Student-t
2.00 31.60 32.71 34.27 34.35 39.67 32.67 8.76
3.00 12.92 13.23 13.64 13.55 15.18 13.44 2.24
4.00 8.61 8.77 9.10 8.90 9.63 9.05 1.13
5.00 6.87 6.97 7.36 7.06 7.46 7.30 0.74
6.00 5.96 6.04 6.51 6.10 6.37 6.39 0.55

Stable
1.10 334.59 356.25 405.38 404.79 478.55 344.18 203.19
1.30 120.95 127.54 140.23 140.44 153.52 124.90 58.84
1.50 54.34 56.89 61.14 61.19 64.10 55.60 21.32
1.70 26.67 27.76 29.30 29.57 29.97 27.00 9.05
1.90 11.33 11.73 12.03 12.33 13.33 9.39 3.19

This table shows the simulation results for the quantile function, expected Xn−5,n
and average of the empirical order statistic. The columns with F−1 and F−1adj are the
inverse quantile function at the probability n−5/n and ((n−5)1/3)/(n+1/3), respectively,
of the simulated distribution. The column E(X) gives the analytical expected
order statistic for the specified distributions. Here En(X) gives the average of the
empirical order statistic obtained from the simulations. The columns F−1EV T,KS and

F−1EV T,EY E represent the empirical average of the EVT quantile estimator, where the
threshold is determined by the KS distance metric and automated Eye-Ball method,
respectively. The probabilities are adjusted with the suggestion by Hyndman and
Fan (1996). St dev sim displays the standard deviations of the empirical maxi-
mum. The sample size of each simulation is n = 10, 000 with R = 10, 000 repetitions.
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